Волны в однородных и неоднородных средах

Лекция 6

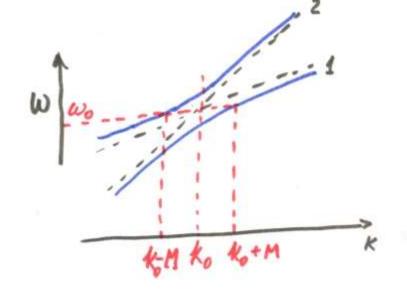
http://aislepkov.phys.msu.ru

Лекция 6

Тема 1. Основные свойства волновых процессов малой амплитуды.

- 1.12. Связанные моды.
 - 1.12.1. Периодическая связь.
 - 1.12.2. Апериодическая связь.

Тема 2. Нелинейные волны.


- П.2.1. Нелинейные колебания
 - П.2.1.1. Представление движений осциллятора на фазовой плоскости.
 - 2.1.2. Примеры нелинейных систем. Качественное описание движения нелинейного осциллятора.

1.12. Связанные моды.

1.12.1. Периодическая связь.

$$\frac{\partial u_1}{\partial x} = -ik_1u_1 - iMu_2,$$

$$\frac{\partial u_2}{\partial x} = -ik_2u_2 - iMu_1.$$

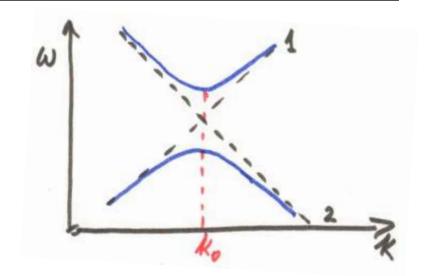
$$k_{\pm} = \frac{k_1 + k_2 \pm \sqrt{(k_1 - k_2)^2 + 4M^2}}{2}$$

Лекция 6

Тема 1. Основные свойства волновых процессов малой амплитуды.

- 1.12. Связанные моды.
 - 1.12.1. Периодическая связь.
 - 1.12.2. Апериодическая связь.

Тема 2. Нелинейные волны.


- П.2.1. Нелинейные колебания
 - П.2.1.1. Представление движений осциллятора на фазовой плоскости.
 - 2.1.2. Примеры нелинейных систем. Качественное описание движения нелинейного осциллятора.

1.12. Связанные моды.

1.12.2. Апериодическая связь.

$$\frac{\partial u_1}{\partial x} = -ik_1u_1 - iMu_2,$$

$$\frac{\partial u_2}{\partial x} = -ik_2u_2 + iMu_1.$$

$$k_{\pm} = \frac{k_1 + k_2 \pm \sqrt{(k_1 - k_2)^2 - 4M^2}}{2}$$

Задание к лекции 6

Задание 1.

Если вся мощность сосредоточена в одном волноводе, то на какой длине L должны быть связаны волноводы, чтобы обеспечить переход всей мощности?

Переход половины мощности?